Physical conserved quantities for the axisymmetric liquid, free and wall jets

نویسندگان

  • Rehana Naz
  • Fazal Mahomed
چکیده

A systematic way to derive the conserved quantities for the axisymmetric liquid jet, free jet and wall jet using conservation laws is presented. The flow in axisymmetric jets is governed by Prandtl’s momentum boundary layer equation and the continuity equation. The multiplier approach is used to construct a basis of conserved vectors for the system of two partial differential equations for the two velocity components. The basis consists of two conserved vectors. By integrating the corresponding conservation laws across the jet and imposing the boundary conditions, conserved quantities are derived for the axisymmetric liquid and free jet. The multiplier approach applied to the third-order partial differential equation for the stream function yields two local conserved vectors one of which is a non-local conserved vector for the system. One of the conserved vectors gives the conserved quantity for the axisymmetric free jet but the conserved quantity for the wall jet is not obtained from the second conserved vector. The conserved quantity for the axisymmetric wall jet is derived from a non-local conserved vector of the third-order partial differential equation for the stream function. This non-local conserved vector for the third-order partial differential equation for the stream function is obtained by using the stream function as multiplier. Keywords—Axisymmetric jet,liquid jet, free jet, wall jet, conservation laws, conserved quantity

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Simulation of Free Surface in the Case of Plane Turbulent Wall Jets in Shallow Tailwater

Wall-jet flow is an important flow field in hydraulic engineering, and its applications include flow from the bottom outlet of dams and sluice gates. In this paper, the plane turbulent wall jet in shallow tailwater is simulated by solving the Reynolds Averaged Navier-Stokes equations using the standard  turbulence closure model. This study aims to explore the ability of a time splitting method ...

متن کامل

Axisymmetric Vibrations in Micropolar Thermoelastic Cubic Crystal Plate Bordered with Layers or Half Spaces of Inviscid liquid

In present study is concerned with the propagation of axisymmetric vibrations in a homogenous isotropic micropolar thermoelastic cubic crystal plate bordered with layers or half spaces of inviscid liquid subjected to stress free boundary conditions in context of Lord and Shulman (L-S) and Green and Lindsay (G-L) theories of thermoelasticity. The secular equations for symmetric and skew-symmetri...

متن کامل

A Problem of Axisymmetric Vibration of Nonlocal Microstretch Thermoelastic Circular Plate with Thermomechanical Sources

In the present manuscript, we investigated a two dimensional axisymmetric problem of nonlocal microstretch thermoelastic circular plate subjected to thermomechanical sources. An eigenvalue approach is proposed to analyze the problem. Laplace and Hankel transforms are used to obtain the transformed solutions for the displacements, microrotation, microstretch, temperature distribution and stresse...

متن کامل

Group invariant solutions for radial jet having finite fluid velocity at orifice

The group invariant solution for Prandtl’s boundary layer equations for an incompressible fluid governing the flow in radial free, wall and liquid jets having finite fluid velocity at the orifice are investigated. For each jet a symmetry is associated with the conserved vector that was used to derive the conserved quantity for the jet elsewhere. This symmetry is then used to construct the group...

متن کامل

Impinging laminar jets at moderate Reynolds numbers and separation distances.

An experimental and numerical study of impinging, incompressible, axisymmetric, laminar jets is described, where the jet axis of symmetry is aligned normal to the wall. Particle streak velocimetry (PSV) is used to measure axial velocities along the centerline of the flow field. The jet-nozzle pressure drop is measured simultaneously and determines the Bernoulli velocity. The flow field is simul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009